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PROBABILISTIC EVENT NETWORKS BASED
ON DISTRIBUTED TIME-STAMPED DATA

FIELD OF THE INVENTION

The subject matter presented herein generally relates to
using probabilistic event networks to improve business key
performance indicators (KPIs) based on distributed, time-
stamped data.

BACKGROUND

Increasing digitization of enterprise internal operations as
well as external environments implies an availability of infor-
mation about a large amount of ordinary events that occur
within and around an enterprise. For example, systems for
enterprise resource planning (ERP), supply chain manage-
ment (SCM), or customer relationship management (CRM)
record many of the events related to the corresponding man-
agement areas. Also, RFID sensors provide information
about events related to physical assets. Given a stream of
primitive data about ordinary events, actionable information
may be extracted to allow reasoning and decision-making in
real-time.

BRIEF SUMMARY

One aspect provides a method for predicting events from
event log data, comprising: constructing at least one proba-
bilistic event network using training data, the training data
being multivariate point process data, said constructing com-
prising: receiving the training data; determining co-occur-
rence assignments for pairs of event classes represented in the
training data; generating at least one case set comprising
correlated events for at least a portion of the pairs of event
classes using the co-occurrence assignments; and construct-
ing the at least one probabilistic event network from the at
least one case set; receiving a query regarding at least one
future event; and upon receiving the query, using the at least
one probabilistic event network to infer a probabilistic state-
ment regarding said at least one future event using a network
inference mechanism.

Another aspect provides a computer program product for
predicting events from event log data, comprising: a com-
puter readable storage medium having computer readable
program code embodied therewith, the computer readable
program code comprising: computer readable program code
configured to construct at least one probabilistic event net-
work using training data, the training data being multivariate
point process data, wherein to construct further comprises:
receiving the training data; determining co-occurrence
assignments for pairs of event classes represented in the train-
ing data; generating at least one case set comprising corre-
lated events for at least a portion of the pairs of event classes
using the co-occurrence assignments; and constructing the at
least one probabilistic event network from the at least one
case set; computer readable program code configured to
receive a query regarding at least one future event; and com-
puter readable program code configured to, upon receiving
the query, use the at least one probabilistic event network to
infer a probabilistic statement regarding said at least one
future event using a network inference mechanism.

A further aspect provides a system for predicting events
from event log data, comprising: at least one processor; and a
memory device operatively connected to the at least one
processor; wherein, responsive to execution of program
instructions accessible to the at least one processor, the at
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2

least one processor is configured to: construct at least one
probabilistic event network using training data, the training
data being multivariate point process data, wherein to con-
struct comprises: receiving the training data; determining
co-occurrence assignments for pairs of event classes repre-
sented in the training data; generating at least one case set
comprising correlated events for at least a portion of the pairs
of event classes using the co-occurrence assignments; and
constructing the at least one probabilistic event network from
the at least one case set; receive a query regarding at least one
future event; and upon receiving the query, use the at least one
probabilistic event network to infer a probabilistic statement
regarding said at least one future event using a network infer-
ence mechanism.

The foregoing is a summary and thus may contain simpli-
fications, generalizations, and omissions of detail; conse-
quently, those skilled in the art will appreciate that the sum-
mary is illustrative only and is not intended to be in any way
limiting.

For a better understanding of the embodiments, together
with other and further features and advantages thereof, refer-
ence is made to the following description, taken in conjunc-
tion with the accompanying drawings. The scope of the inven-
tion will be pointed out in the appended claims.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1(A-B) illustrates an example approach for learning a
probabilistic event network (PE net).

FIG. 2 illustrates an example method for making inferred
probabilistic statements from PE nets.

FIG. 3 illustrates example events and dependencies.

FIG. 4 illustrates an example of distributed, time-stamped
event log data.

FIG. 5 illustrates examples of co-occurrence score genera-
tion for a pair of events.

FIG. 6 illustrates an example of cluster based generation of
co-occurrence scores for pairs of event classes

FIG. 7 illustrates example case sets.

FIG. 8 illustrates an example of context addition to case
sets.

FIG. 9 illustrates example directed edges from event occur-
rence variables to the corresponding time variables.

FIG. 10 illustrates an example PE net and inferred proba-
bilistic statements regarding an example event.

FIG. 11 illustrates an example computer system/server.

DETAILED DESCRIPTION

It will be readily understood that the components of the
embodiments, as generally described and illustrated in the
figures herein, may be arranged and designed in a wide vari-
ety of different configurations in addition to the described
example embodiments. Thus, the following more detailed
description of the example embodiments, as represented in
the figures, is not intended to limit the scope of the claims, but
is merely representative of those embodiments.

Reference throughout this specification to “embodi-
ment(s)” (or the like) means that a particular feature, struc-
ture, or characteristic described in connection with the
embodiment is included in at least one embodiment. Thus,
appearances of the phrases “according to embodiments™ or
“an embodiment” (or the like) in various places throughout
this specification are not necessarily all referring to the same
embodiment.



US 9,047,558 B2

3

Furthermore, the described features, structures, or charac-
teristics may be combined in any suitable manner in different
embodiments. In the following description, numerous spe-
cific details are provided to give a thorough understanding of
example embodiments. One skilled in the relevant art will
recognize, however, that aspects can be practiced without
certain specific details, or with other methods, components,
materials, et cetera. In other instances, well-known struc-
tures, materials, or operations are not shown or described in
detail to avoid obfuscation.

Given that information is available about a large amount of
ordinary events that occur within and around an enterprise,
using this information to improve business key performance
indicators (KPIs) is of interest. Within event-driven architec-
tures (EDA) complex event processing (CEP) is the task of
matching a confluence of ordinary events against predefined
event patterns, called complex events. For example, using
historical data, a sales manager of a paper company may want
to predict if and when a customer will reorder paper in the
following month. Thus, the event is a “purchase order”, and
the underlying KPI is “increase the number of purchase
orders”.

An embodiment provides a probabilistic representation of
event patterns that may be leveraged to provide for such
forecasting. For example, an embodiment utilizes Bayesian
networks in order to represent event patterns as probabilistic
event networks (PE nets). PE nets provide rich models con-
sisting of stochastically caused relations between events, and
relations between variables specifying the context of events.
Some benefits of a probabilistic representation are the possi-
bility of automatically learning event patterns from past event
streams and the ability to use these patterns in order to for-
mulate probabilistic queries. This will build the foundation of
probabilistic EDAs allowing users to infer prognostic as well
as diagnostic statements about non-deterministic environ-
ments.

In traditional event-based methodologies, events are typi-
cally represented as quintuple €=(id, a, c, t,, t,) with id as the
unique identifier, a={attr , attr.,, . . ., attr, }, as the attribute set,
c={€,,E,,...,Em}, as the event set that caused event €, and
t,,t, as the starting and ending time, respectively. Event pat-
terns are deterministic templates that match certain sets of
events. Frequently, they describe not only events but also their
causal dependencies and their context. In order to be able to
apply probabilistic techniques, a representation based on
probabilistic graphical models is chosen here. More specifi-
cally Bayesian nets (BN) are used, as structural and para-
metrical learning algorithms for BNs are quite advanced.
Some definitions utilized are as follows.

Definition 1 (Events). An event Eis atriple (id, date, y) with
1d(€)=id as the unique identifier, Date(€)=date specifying a
unique location in time, and Class(€)=y the event class.

Definition 2 (Event classes). Given a set of attribute vari-
ables A and its domain, Dom(<A ), an event class v is an
element of Dom( A ).

An event class y represents all events that share a certain set
of features. Event classes are divided in atomic event classes
denoted by v* and event patterns, that is, probabilistic event
networks, denoted by y". A formal definition of y¥ follows in
Definition 6. First, some further concepts are introduced.

Definition 3 (Occurrences). Given a set of event classes, I,
occurrence is a binary variable related to an event class yEI'
and denoted by W, with Dom(W,)={false, true}. If and only if
there is a particle E{ ) =true, an event of class y occurs and
there is a bidirectional implication of the form & W)=
true<=> 3E=(id, date, y).
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As used herein, 1, denotes the value of ), and wy denotes
true and wy denotes false. W, is used to denote a set of
variables of 1, with each yEIl. An element of
Dom(Wr)=IL,cr Dom(W,) is denoted by 1, and 1P is used
to denote W, =false for each W EW,. Based on the notion of
occurrences, the event context is deﬁned as follows.

Definition 4 (Event context): Given a variable W, aset of
context variables @' specifies facts about the state in which an
event of class y, occurs. It can be differentiated between the set
of generic context variables®__ ‘< @', Where the assignment
§<CI) > is unknown in case of = YZ) ﬂpw and the set of
spec1ﬁc context variables CI)SP% 7@1 oo where E<d_ >
is not defined in case of (W) =.,” (i.e. &( ®;’) =null for each
@ lE@SpeCl)

The domain of each CI) is denoted by dom(®; H=1¢",
¢%, . ¢*}, and the domain of @' is denoted by
Dom(CI) ) quapz Dom(®,), representlng the set of all pos-
sible assignments to the Varrables in @', ¢'is used to represent
an element of Dom(®’). The set of all context variables of a
set W, is denoted by ®" and an element of Dom(®" )=TIdic 4
dom(®") is denoted by ¢'. Further, ¢,/ is used to denote
@ '=null for each ®E®". In order to represent relationships
for occurrences and event context the following definition is
used.

Definition 5 (relations). Let x be the union W, U®', a
relation is a tuple r=(X,, X)), X,#X A X,, X, €X which repre-
sents a relationship in the way that the value of x; depends on
the value of x,.

R will be used for representing a set of relations. Intuitively,
given a variable W, and a set of context variables CI)SP%Z, for
each @D,/ there is a default relation rdef““”*(lpw, i)
representing the fact that specific context variables always
depend on the actual occurrence of an event. Based on above
definitions, the notion of PE nets is defined as follows.

Definition 6 (Probabilistic Event Networks). Let x repre-
sent a union ¥.U®" with Dom(x)=TI(Dom(¥)xDom(®"))
and assume a set R over the variables in x. A probabilistic
event network (PE net) vV is a BN (G, ©) where the directed
acyclic graph G=(X, R) represents the structure of v and the
parameters © specify the set of conditional probabilities in
the form 6, o =P(X=x,IPa(x)=pa (X)) where XEX and (Pa
X),X)ER for each Pa(X)EPaO() and with:

z (SRR

‘x;EDom(x) Vxilpa; (€9

Based on Definition 6, an event class y,&I is part of
PE net y". In order to allow reasoning over time for PE nets,
the following additional concepts are used.

Definition 7 (Trigger). Given y"=(G,0) with G= (‘PFU,R)
and glven a particle EW M=V, 'N <3 =(id_date_,y™’ )
there is exactly one particle E( >ﬂpy1 < 3, =(id,.
date,,y,) such that date <date, for any é( )ﬂpw <dJe=
(id, datey,y]) with ¥, W, E‘P

€, is the trigger of €,. and denoted by t (€,). W, is called
a trigger variable of vyn and the set of all trigger variables
within W, given ¥ is denoted by 7 (y*). Based on the defi-
nition for triggers in a PE net, now a variable is defined that
represents the time context of an event occurrence and
thereby enables reasoning procedures over time.

Definition 8 (Time Context) Given (W) =y~ les3e,
withy™=(G,8)and G= (IPYUCI) .R) andgrven t (E)~€,=(id,
date ,yl)c> E(=yd ﬂpw for each variable W, , €W - the t1me
context is a relation r,,, = (1P O] W1th CI)nmekECI)S oo
such that (@, " =mull in case of g yk) ﬂpyk and
g @,y =date ~date, in case E(W, )=y, <>3IE =(d,
date,,y,).

For each variable @, *
denoting the maximum value of @
denote all time variables in G.

y

there is a constant max(®,,, ")
®,.." is used to

nme . time
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Definition 9 (Range). Given v"=(G,0) with G=(¥ U®",
R) the range of ¥V is (y")=max{ll max(®,, )}V, ‘€
VY, EVL.

Although the time context represents a continuous vari-
able, in the following a discretization of this variable is
assumed, resulting in an ordinal variable with a set of time
ranges as values. Based on the above assumptions, for large
numbers of time slices an explicit representation of events
through PE nets is more efficient than a DBN based represen-
tation, as can be shown by proving the following theorem.

Theorem 1. Given a set of random variables =% U®", for
large numbers of time slices the number of parameters nec-
essary for representing a joint distribution over i with DBNs
is exponentially larger than the number of parameters neces-
sary for representing the same distribution with PE nets.

Proof. A DBN is represented by a pair (Bo.B-) , where B, is
a BN over ¥, with %’ representing the state of a set of
random variables y at time t,, and B is a set of BNs, where
each B_“&B __ is a conditional BN over x'* given X,,
with X, & Hi:tot"'lx(i) for all t,>0. Non-temporal relations (in-
tra-time-slice edges) in a DBN are defined through B , and
temporal relations between variables (inter-time-slice edges)
are represented with B __. In a PE net based representation
non-temporal relations are all relations where no time context
is involved: Given v"=(G,®) with G=(¥U®" R), non-tem-
poral relations are all r=(X,,X,)&R with XA X]¢Cbﬁmr. The
representation of non-temporal relations is the same as for
DBNs. The difference to DBNs is that PE nets use a time
context for each occurrence of an event instead of the transi-
tionmodel B _,. Therefore, one can reduce the comparison to
DBNs to all relations involving a time context. Consider
=X, X,)ER with X=0@time* and r,, W, P, )¢
RAW,,EW: Given Dom(X )={null, t,, . .., t,}, the number
of parameters for specifying the conditional distribution
pX,X,) with PE nets is [Dom(X,)I*(n+1). The relation r
represents the fact that the distribution over the time context
of W, (that is, the distribution over the date of the occurrence
of events of class y,) depends on the value of variable X,.
Using DBNS, this dependency would be encoded in a condi-
tional distribution over the variable va(’q) given
X0 @nd ¥ b for each t,>0. The number of parameters
needed is thus 4*Z__,"(IDom(X,)!) and not exponential in the
size of the time slices. Let’s now consider r=(X,,X,)ER with
X~=®,, .~ and rﬁme:(lpyk,d)ﬁmeA)ERA W, EW: Given Dom
(X)={null, t,, . . ., t,}, the number of parameters for speci-
fying the conditional distribution P(X;IX,) with PE nets is
again IDom(X )I*(n+1). In this case the relation r represents
the fact that the distribution over variable X; depends on the
time context of W, ;. Using DBNs the variable W, , would be
considered in each time slice t,, . . . , t, denoted by
W, W, The dependency of X, from ®,,,.* would
therefore be encoded in the transition model and specified
with the conditional distributions P(X, 1, 0, ... W, ()
for each ¢>0. Hence, the number of parameters for each
conditional distribution is Z,_,*(IDom(X )| #2@-1y and there-
fore exponential in the size of time slices.

Traditional event-based methodologies assume complete
information and deterministic environments. This leads to the
following inference tasks, typically used with traditional
approaches. First, logical statements can be made regarding
which events will follow based on given observations. Sec-
ond, a given stream of events can be checked if there is an
occurrence of an event pattern described in terms of a logical
formula. The output of these tasks is either sequences of
events or true/false statements.

In BN theory inference refers to computing the posterior
probability P(XIY=y) of a set of x query variables after
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obtaining some observations=y. Many exact and approximate
algorithms for BN inference have been suggested. Inference
in PE nets is a special case of BN inference and thus all the
algorithms for BNs also apply to PE nets.

Imagine an environment with an agent able to infer over PE
nets using some of the inference algorithms referenced above.
Differentiation can be made between prognostic (ex ante) and
diagnostic (ex post) reasoning.

Definition 10 (Prognostic Reasoning). Given v"—(G,0)
with G=(X=W, U®" R), and assuming complete informa-
tion, prognostic reasoning within PE nets comprises the fol-
lowing inference tasks: 1) If E<W, >=y ° forall ¥, €T (v™),
¥ is inactive with no observations related to v and the pos-
terior probability P(X') with X' =X can be computed. 2) If
E<W, =)' <> IE =(id, date,,y,) with W, €T (vV), and if
date_,,,,,,<date +Range(y"), ¥ is active with observations
Y=y and the posterior probability P(X'lY=y) with X' = X can
be computed.

Intuitively, the first task allows reasoning over a PE net
without having observed an occurrence of any of its triggers.
Thus, inferred statements include probabilities of the occur-
rence of any of the triggers. Given that a trigger has occurred,
that is, the PE net is active, the second task includes any query
about elements of the PE net that did not yet occur. Note that
as time progresses, probabilities of the time context of an
event occurrence change and therefore parameters of the time
context need to be adjusted.

Theorem 2. Given v"=(G,0) with G=(X=¥ U®" R) is
active, that is, &{ IPYZ) :ll)yil < e =(id ,date,,y,) with
w.eT &™), and given §< 1I’W.> :ll)w-o with W W, if
date <date_+max(®,,,/), the following parameters need

current me

to be adjusted:

if aNb < dategyyrens: 0 = @
a=Py, . <b
2.
if aNb > dateyrrens: 0 .= &
asd)n-mgsb‘dzyj
0
1
o as@/‘-mesb‘dzyj
; + # i
aﬁq’{imeﬁb‘w%'j 0 ; ; | datex <V}, <date current d’%’j
=g Sma"(q’rime)‘d’yj
3.
if @ < datecurrens N b > datecurrers: 0 _j @

. L =
nmeﬁb‘d’y i

y .
datecurren <V =t}

Proof. Since at time date,,,.,5(V,) :ll)w-o is given,
according to Definition 8, E(®,,, . /) =null and thus at any time
before or at date (2) follows. Thus, adjusted parameters

curvent

o . =0
as@,‘-mgsb‘dzyj

for any a aA b=date Due to (1), the parameters

current®

0 .
/. 1
a=dyp,.. Sb“/’yj
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need to be adjusted for any aA b>date,,,,,.,,, according to (3).
(4) follows by summing

=0and &

a< time SA4t¢ current ‘dfyj darecurﬂm«)ﬂme <b‘¢,yj

Whereas prognostic reasoning assumes complete informa-
tion and comprises queries about future event occurrences
and their context, diagnostic reasoning assumes incomplete
information and includes all queries about missing informa-
tion on past event occurrences and their context.

Definition 11 (Diagnostic Reasoning). Given y,~(G,0)
with G=(X=¥.U®" R), and assuming incomplete informa-
tion with information about X' < X missing, diagnostic rea-
soning within PE nets comprises the following inference task:
IfE(W.,,) =y,,' <> IE ~(id,.date,y,) with ¥, ,ET (v"), and
if datecumm?date +Range(yN) (W) ﬂpw and the poste-
rior probability P(X'I'Y=y) with y=X-X' can be computed.

A major advantage of using PE nets for representing event
patterns is the possibility to include uncertainty and formulate
rich probabilistic queries that allow prognostic and diagnostic
reasoning as defined above. Both kinds of probabilistic rea-
soning are not possible with traditional event-based
approaches.

Learning Probabilistic Event Networks

Representations based on PE nets allow not only reasoning
about predefined event patterns as in traditional event-based
approaches, but also learning typical event patterns from dis-
tributed and noisy event data. In event-based environments
one is typically confronted with data streams representing
sets of events generated by distributed sources. Let’s consider
a representative timeframe and assume a recorded dataset
representing a set of events €, ordered according to time.
Thus, for any pair &=(id;,date,,y,) and €,=(id,,date,,y;) with
i<j, date,<date,. Further, consider a set I’ and assume a func-
tion that assigns to each €EE at least one yEI'* and thus
Classes(€) = I'*. Assignments are usually performed through
matching of attribute configurations assigned to an event and
attributes assigned to y. For assigning an event to y the
attribute configuration of the latter needs to be a subset of the
former’s attribute configuration. Optionally available taxono-
mies can be considered in the matching process. This may
result in events assigned to more than one class, whereas the
corresponding classes are hierarchically related to each other.
In the following specifics to be considered while using tax-
onomies are not addressed and it is assumed that for each see
there is exactly one assignment (€,y) with y&I%. It is further
assumed that for each €=(id, date, y,)<=> E{W. >*1P the
recording of the context E{ @) =¢’ with ¢’ EDom(CI)) Let’s
denote the context of all events in € with Context(€). Now,
the task is to learn IV from a set ¢ (€ Context(€)) of I€l
tuples (E,£( @")).

BN learning in general assumes training sets representing
samples of the network to be learned. These training sets may
be noisy and incomplete. However in the problem formulated
above it is unknown how many networks are responsible for
generating e and it is not known which atomic event classes
belong to which PE net.

Thus, the set 2 (€) needs to be preprocessed using heuris-
tics in order to identity time-based correlations between event
classes constituting I'". Thereby only date, and Y, need to be
considered for each record in ¢ (€). Several research fields
addressed the problem of identifying correlations across
time-based sequences.
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Learning Co-Occurrences

In general correlations between events are determined by
identifying ordered collections of events frequently co-occur-
ring within a certain time range. Thereby approaches differ
based on the order of events, that is, directed versus undi-
rected approaches, based on the minimum frequency of
occurrence and based on the time range chosen. Some
approaches consider interval rules across time series allowing
for example detection of correlations between clusters of
events.

Different approaches lead to different correlation results.
Here an example combinatorial approach is taken, leading to
several alternative correlation results in a first step, all of
which are evaluated, and one being selected, in a subsequent
step. In order to be able to combine several approaches, only
pairwise co-occurrences are considered, whereas many
approaches from frequent episode mining continue to further
analyze co-occurrences of pairs of events. Here, the latter will
be substituted with a Bayesian approach for generating more
complex event relations.

Lemma 1. There is a set of heuristics £ where each heu-
ristic h, EH takes the set € as input and generates for each
pair (yl,y]) with stYjer aset of co-occurrences y,, vV where
each v,""Ve&y, "V is a tuple (€,€") with €'= (ide.datec.,y,)
and E" (idedate. .1, Further, for any two tuples v, ""V=
(E,€Mandv V= (E"' &""), the following holds: €'=&"" and
Ell Ellll

Definition 12 (Co-occurrence Scores). Given a pair of
events (y,,y,) and a set yh;’i’y", there are three co-occurrence
scores:

1. score, (v~ Y,)=Iy;, VI IEEEIE=(id;,dateyy;) ©)

2. scorehx(yj:yi):\yhx‘”’vf\/\EkEE\Ek:(idk,datek,yj) (6)

3. scorey, (v, < y,)=min({score,, (v,=> 7)),

Scorehx('\{j: o)) M

The first two scores are called unilateral scores and the last
a bilateral score. It is assumed that bilateral scores indicate a
stronger correlation than unilateral scores. Now, let P
denote a set of parameters for heuristic h, and let « * be a
constant factor representing a weight for heuristic h,.
Let P denote the set {P*,P* .. . puwal and W the
set {w ™, w™, . .., w )} Further, given a pair of event
classes (v;,y,), asety, ™V and a co-occurrence score scorey, (¥;,

Y,), let constant s denote the minimum threshold for V5 ]

and let the constant t be a minimal threshold for a score,, (yl,y])
such that the pair (7,,y,) is being considered. Let constant p be
a penalty for unilateral scores. Now, a procedure can be
defined that takes the sets £ (P )={h,(P™), ..., fwm (Phea )},
W and €, and the three predefined constants s, t and p as
input and generates an ordered list of co-occurrence sets Y,
whereas ordering is based on the weighted score.

Probabilistic Event Networks Learning

Giveny, asimple procedure is defined for generating sets of
cases Q={Q,, Q,, ..., Q, } where each set will serve as the
basis for learning details of ¥". This procedure assumes that
no v can be associated with more than one y";

Assumption 1. Given a set I'V, if Vy"=((X’,R}),0)E
FZ ,VYZ(.]N =((X,R),0)ET™: Ty, A ¥, XAV, EX =

cach Q,EQ contains a set of cases {w,, w,, . . s Wi +

where each o, contains a set of events ev={e,” 62 e,
Ees o1} with each Ek‘”JEE Let’s denote the union of all
event classes entailed in Q, by FQI*szl‘Q W _ 'Y Class
(€,”) and the union of all events entailed in Q, by
€%=U, 'y, <7 <. Further assume that in case of a
non-occurrence of an event of a certain class, there is a ran-
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dom assignment to all its generic context variables according
to their prior probability distribution.

0 .
: )=, °, the assignment for &
' is randomly generated from a given distribu-

Assumption 2. Given &( W,
(@

en') Vgen
tion P(®,,.).
Now a theorem can be formulated stating that for eachcase
there is an assignment over all variables <, ¢* q),mer i
Theorem 3. Given n, generated by procedure
Generate_Cases(y), for all QEQAVwEQ;: EJJE[]]( )=x
with x EMTDom(P = )><D0m(CI)r l)xDom(CI)nme ;

Proof According to Definition 3, for all w;:m=>

E(Wre,) e, with Yre,EDom(W «,) where E( W, )ﬂpy if

Je= (1d date,y)Em, and E(w ) =y, ' if IE=(id,date,y)Ew,. In
addition, dueto the initial set Q (&) thereis for each w; and for

each configuration £( @) =¢" if Ac=(id,date,y)Ew,. In case
J==(id,date,y)Sw, due to Definition 4 there is an assignment

E(®,,,.") =null and due to Assumption 2 there is an assign-
ment §( ®,,,") =¢,,,". Further, since each  EQ, represents

an occurrence E{ W v) =y ' <> €, according to Definition 7
there is for each m &€, an event €'¢ (€,). Thus, according to
Deﬁnition 8 there is for each W 2,EW <, a relation r,,,,,~(¥,,

®,,.) and for each w, EQ there is a assignment
£(®,,,") with E( W)=y or €
(D@} of E(W,)=
WYIC:’ Ek

Now, the problem of learning y" to a set of 1€2I BN learning
problems: Foreach Q,€EQ, let X=W <, Ut ‘U, ™ be the
variables of a BN and let the set D~ {E[l], .. E[IQZI]} bea

set of particles where each E[j]{ X) =x; with E[j] {X) or short
x[j] denoting the assignment to x in the particle E[j]. Now,
let D, be the training set for the learning. Here, a random
restart hill-climbing approach is used for searching the space
of possible net structures and the Bayesian Information Cri-
terion is used for evaluation of the structures. Other search
procedures and scoring metrics have been suggested and can
be used alternatively. Further, due to Definition 5, in addition
to the acyclicality property of BNs the space of legal net
structures is limited to the graphs that contain the set R“/*,
For estimating the parameters of the selected structure the
maximum likelihood estimation (MLE) approach for Baye-
sian networks is used.

FIG. 1(A-B) illustrates an example approach for learning
I'Y. Note that each y/=(G,®)EI"™ has been learned on the
basis of a heuristically generated dataset D, neglecting all
other events in € and thereby assuming wrong priors for y,”.
Procedure Adjust_Parameters(I"”,&€) performs a correspond-
ing adjustment based on some known distribution (for
example, a Poisson-based distribution) of the random occur-
rence of any of the triggers of a PE net.

Accordingly, an embodiment provides a novel way for
representing events, called PE net, based on BN theory. PE
nets define relations between event occurrences, relations
between context variables, and relations between event
occurrences and context variables. In contrast to DBNs, time
is understood here as a context variable, and therefore rela-
tions between variables across several time slices can be
represented in a much more compact way.

The same algorithms used for BN inference can be used for
inference in PE nets, allowing reasoning with uncertainty,
which is a novel way of reasoning in the context of traditional
event-based frameworks, such as CEP or process manage-
ment. In addition, representation through PE nets enables
automatic discovery of event patterns from unlabeled and
distributed event logs. A corresponding learning process

e )fnull in case E{
Date(Ek‘”f) -Date(€') in case
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combining heuristics from frequent episode mining and
learning techniques from BN theory has also been described.

Thus, referring to FIG. 2, an embodiment will generate
co-occurrence scores for each pair of event classes 210 given
an input training set. The training set includes for example a
representative history of event log data. Then, an embodiment
will choose the best score for each variable pair and generate
a ranking 220. Case sets will then be generated 230, and PE
nets will be learned from the case sets 240. Given a new input
of'event log data (validation set), and a query, an embodiment
may infer probabilistic statements from the PE nets 250 in
order to make better decisions, such as determining when to
follow up with customers in order to increase purchase
orders.

As a concrete, non-limiting example, consider again the
sales manager of a paper company that wants to predict if and
when a customer will reorder paper in the following month.
The future event of interest is a “purchase order”, and the
underlying KPI is “increase the number of purchase orders”.
Consider the following activities that may be gathered into a
representative history of event log data. The paper company
occasionally advertises on television (TV) (Event: “TV Com-
mercial”). The paper company occasionally advertises on
radio (Event: “Radio Commercial”). The sales staff occasion-
ally follows up with the customer (Event: “Follow Up”). The
customer occasionally requests further information (Event:
“Information Request™).

As illustrated in FIG. 3, in this example, assume it can be
ascertained from the event log data that TV commercials have
apositive influence on information requests. Also, follow-ups
have a positive influence on information requests. Whenever
there was a TV commercial, consider that the sales stafftends
to lower the priority of following up and thus, there is a
negative dependency between TV commercials and follow-
ups. There is a positive dependency between follow-ups and
purchase orders. An information request is a positive indica-
tor that purchase orders follow. The radio commercials do not
have any influence. Thus, in this example scenario, each of the
events has the influence(s) illustrated in FIG. 3.

Each of these facts (but not necessarily their influences)
may be available to an enterprise. For example, FIG. 4 illus-
trates an example of distributed, time-stamped point process
data (including potentially relevant context variables) in an
event log that might be available to an embodiment. Such data
is accessed by an embodiment to provide PE nets.

As illustrated in FIG. 5, an embodiment generates co-
occurrence scores for each pair of event classes in the event
log data. lllustrated in FIG. 5 are examples of directed and
undirected co-occurrence scores for events “TV Commer-
cial” and “Follow Up” of the event log data. The co-occur-
rence scores used can vary and those in FIG. 5 are illustrative
only. For example, according to the event log data, relative
directed co-occurrence scores may be as follows:

Unilateral Score (TV Commercial—Follow Up)=3 Co-

occurrences/5 TV Commercials=0.6.

Unilateral Score (Follow Up—TV Commercial)=3 Co-

occurrences/4 Follow-Ups=0.75.

Bilateral Score (TV Commercial/Follow Up)=min (0.6,

0.75)=0.6.

For relative undirected co-occurrence scores:

Unilateral Score (TV Commercial—Follow Up)=4 Co-

occurrences/5 TV Commercials=0.8.

Unilateral Score (Follow Up—TV Commercial)=4 Co-

occurrences/4 Follow Ups=1.0.

Bilateral Score (TV Commercial/Follow Up)=min(0.8,

1.0)=0.8.
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An embodiment may also utilize relative directed co-oc-
currence scores with EM based clustering, as illustrated in
FIG. 6. For example, relative directed co-occurrence scores
with EM based clustering may be as follows:

Unilateral Score (TV Commercial Follow Up)=3 Co-oc-

currences/4 TV Commercial Cluster=0.75.

Unilateral Score (Follow Up—TV Commercial)=3 Co-

occurrences/4 Follow Ups=0.75.

Bilateral Score (TV Commercial/Follow Up)=min(0.75,

0.75)=0.75

An embodiment may perform regression analysis in order
to detect linear relation(s) that indicate overlapping classes
and can thus be treated as separate classes. An embodiment
next chooses the best score for each variable pair and gener-
ates a ranking.

In a next step, illustrated in FIG. 7, an embodiment gener-
ates case sets. For each variable pair (TV Commercial; Fol-
low Up and TV Commercial; Information Request) there is a
set of co-occurrences (generated by the corresponding heu-
ristic). An embodiment builds cases starting with the pairs
with the highest co-occurrence score. In the case of conflicts,
the assignments generated with higher co-occurrence scores
may be considered valid. Then, time and context are added to
the case sets.

As illustrated in FIG. 8, in case of null values for generic
context variables, the value for the context variable is ran-
domly sampled from a known prior distribution (for example,
P(Weather=sunny)=0.8 and P(Weather=not sunny)=0.2) or a
normal distribution. This step is important for learning a
network that correctly considers the prior distribution over
the (weather) variable and for the correctness of inference
tasks that include generic context variables. For example, in
the case where the weather is only be tracked if a follow up
occurs, for all cases where “Follow Up” is null, there is no
value for weather. However, the weather in this case is just
unknown, but it is not “not defined”. Therefore, the value for
the context variable is randomly sampled from a known prior
distribution or a normal distribution.

An embodiment then learns the probabilistic event net-
works from the case sets. Event occurrences are defined as
binary static (in contrast to dynamic) variables (that is, with
domain {false; true} and without a time index as for example
in time-based Bayesian networks or Hidden Markov Mod-
els). In order to learn probabilistic dependencies between
variables an approach based on Bayesian network learning is
chosen, for example a random-restart hill climber over the
space of legal network structures is chosen, whereas each
structure is evaluated against the final case set based on the
Bayesian information criterion (BIC). A structure with the
minimum number of edges is chosen as the initial structure. It
should be noted again that alternative optimization
approaches such as simulated annealing could be chosen for
searching the space of legal network structures. The BIC
criterion penalizes non-sparse network structures and thereby
reduces complexity. The legal structures of probabilistic
event networks include for each event occurrence variable a
directed edge to the corresponding time variable as well as to
all of its specific context variables (not the generic context
variables that are tracked at the occurrence of this event).
Thus, in this example the dependencies illustrated in FIG. 9
are to be included.

An embodiment may infer probabilistic statements from
PE nets. For example, suppose it is Feb. 17, 2010, and the
sales staff that usually follows up with the clients did not
report to the manager if he followed up with a particular
customer (uncertain data). If it is known that on Feb. 6, 2010,
the company did a TV commercial and there was an informa-
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tion request from this customer Feb. 16,2010, an embodiment
may employ these facts to infer the chance that the customer
will re-order paper in this month, when the customer will
most probably re-order this month, and if it would be better to
follow up with the customer on a sunny day (because the
customer might be in a better mood—context variable
“weather”).

An embodiment may construct the example PE net illus-
trated in FI1G. 10. Here, for simplicity only a probability table
for purchase order is shown. It can be readily seen that, based
on the event data available, an embodiment provides a man-
ager with the forecast that the customer will reorder paper in
the month, and it is especially likely if a follow up is made
while it is sunny. Here, when there has been an information
request and a follow up is made on a sunny day, purchase
order p=0.8, whereas when there has been an information
request and a follow up is made when it is not sunny, purchase
order p=0.75. Thus, it would be best for a follow to happen on
a sunny day.

Referring now to FIG. 11, it will be readily understood that
embodiments may be implemented using any of a wide vari-
ety of devices or combinations of devices. A schematic of an
example of a computing node is shown in FIG. 11. Comput-
ing node 10 is only one example of a suitable computing node
and is not intended to suggest any limitation as to the scope of
use or functionality of embodiments described herein.
Regardless, computing node 10 is capable of being imple-
mented and/or performing any of the functionality set forth
herein.

In computing node 10 there is a computer system/server
12, which is operational with numerous other general purpose
or special purpose computing system environments or con-
figurations. Examples of well-known computing systems,
environments, and/or configurations that may be suitable for
use with computer system/server 12 include, but are not lim-
ited to, personal computer systems, server computer systems,
thin clients, thick clients, handheld or laptop devices, multi-
processor systems, microprocessor-based systems, set top
boxes, programmable consumer electronics, network PCs,
minicomputer systems, mainframe computer systems, and
distributed cloud computing environments that include any of
the above systems or devices, and the like.

Computer system/server 12 may be described in the gen-
eral context of computer system executable instructions, such
as program modules, being executed by a computer system.
Generally, program modules may include routines, programs,
objects, components, logic, data structures, and so on that
perform particular tasks or implement particular abstract data
types. Computer system/server 12 may be practiced in dis-
tributed cloud computing environments where tasks are per-
formed by remote processing devices that are linked through
a communications network. In a distributed cloud computing
environment, program modules may be located in both local
and remote computer system storage media including
memory storage devices.

As shown in FIG. 11, computer system/server 12 in com-
puting node 10 is shown in the form of a general-purpose
computing device. The components of computer system/
server 12 may include, but are not limited to, one or more
processors or processing units 16, a system memory 28, and
a bus 18 that couples various system components including
system memory 28 to processor 16.

Bus 18 represents one or more of any of several types ofbus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
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Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 12 typically includes a variety of
computer system readable media. Such media may be any
available media that is accessible by computer system/server
12, and it includes both volatile and non-volatile media,
removable and non-removable media.

System memory 28 can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30 and/or cache memory 32. Computer sys-
teny/server 12 may further include other removable/non-re-
movable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34 can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (for example, a “floppy disk™), and an optical disk
drive for reading from or writing to a removable, non-volatile
optical disk such as a CD-ROM, DVD-ROM or other optical
media can be provided. In such instances, each can be con-
nected to bus 18 by one or more data media interfaces. As will
be further depicted and described below, memory 28 may
include at least one program product having a set (for
example, at least one) of program modules that are configured
to carry out the functions of embodiments of the invention.

Program/utility 40, having a set (at least one) of program
modules 42, may be stored in memory 28 by way of example,
and not limitation, as well as an operating system, one or more
application programs, other program modules, and program
data. Each of the operating system, one or more application
programs, other program modules, and program data or some
combination thereof, may include an implementation of a
networking environment. Program modules 42 generally
carry out the functions and/or methodologies of embodiments
as described herein.

Computer system/server 12 may also communicate with
one or more external devices 14 such as akeyboard, a pointing
device, a display 24, et cetera; one or more devices that enable
auser to interact with computer system/server 12; and/or any
devices (for example, network card, modem, et cetera) that
enable computer system/server 12 to communicate with one
or more other computing devices. Such communication can
occur via Input/Output (I/O) interfaces 22. Still yet, computer
system/server 12 can communicate with one or more net-
works such as a local area network (LAN), a general wide
area network (WAN), and/or a public network (for example,
the Internet) via network adapter 20. As depicted, network
adapter 20 communicates with the other components of com-
puter system/server 12 via bus 18. It should be understood
that although not shown, other hardware and/or software
components could be used in conjunction with computer
system/server 12. Examples, include, but are not limited to:
microcode, device drivers, redundant processing units, exter-
nal disk drive arrays, RAID systems, tape drives, and data
archival storage systems, et cetera.

As will be appreciated by one skilled in the art, aspects may
be embodied as a system, method or computer program prod-
uct. Accordingly, aspects of the present invention may take
the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, et cetera) or an embodiment combining software
and hardware aspects that may all generally be referred to
herein as a “circuit,” “module” or “system.” Furthermore,
aspects of the present invention may take the form of'a com-
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puter program product embodied in at least one computer
readable medium(s) having computer readable program code
embodied thereon.

Any combination of at least one computer readable medi-
um(s) may be utilized. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having at least one wire, a
portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible or non-signal medium that can
contain or store a program for use by or in connection with an
instruction execution system, apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
embodiments may be written in any combination of at least
one programming language, including an object oriented pro-
gramming language such as Java, Smalltalk, C++ or the like
and conventional procedural programming languages, such
as the “C” programming language or similar programming
languages. The program code may execute entirely on the
user’s computer, partly on the user’s computer, as a stand-
alone software package, partly on the user’s computer and
partly on a remote computer or entirely on the remote com-
puter or server. In the latter scenario, the remote computer
may be connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider).

Embodiments are described with reference to figures of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments. It will be understood that
portions of the firgures can be implemented by computer
program instructions. These computer program instructions
may be provided to a processor of a general purpose com-
puter, special purpose computer, or other programmable data
processing apparatus to produce a machine, such that the
instructions, which execute via the processor of the computer
or other programmable data processing apparatus, create
means for implementing the functions/acts specified.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified. The computer program instructions
may also be loaded onto a computer, other programmable
data processing apparatus, or other devices to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other devices to produce a com-
puter implemented process such that the instructions which
execute on the computer or other programmable apparatus
provide processes for implementing the functions/acts speci-
fied.
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This disclosure has been presented for purposes of illus-
tration and description but is not intended to be exhaustive or
limiting. Many modifications and variations will be apparent
to those of ordinary skill in the art. The example embodiments
were chosen and described in order to explain principles and
practical application, and to enable others of ordinary skill in
the art to understand the disclosure for various embodiments
with various modifications as are suited to the particular use
contemplated.

Although illustrated example embodiments have been
described herein with reference to the accompanying draw-
ings, it is to be understood that embodiments are not limited
to those precise example embodiments, and that various other
changes and modifications may be affected therein by one
skilled in the art without departing from the scope or spirit of
the disclosure.

What is claimed is:

1. A method for predicting events from event log data,
comprising:

constructing at least one probabilistic event network using

training data, the training data being multivariate point

process data, said constructing comprising:

receiving the training data;

generating co-occurrence scores for pairs of event
classes represented in the training data;

the co-occurrence scores indicating a correlation
between two variables included in the pairs of event
classes;

wherein a co-occurrence score for at least one of the
pairs of event classes is based upon a correlation of
time between the two variables included in the at least
one of the pairs of event classes;

wherein the co-occurrence score for at least one of the
pairs of event classes is based upon an order of events
between the two variables included in the at least one
of the pairs of event classes;

generating at least one case set comprising correlated
events for at least a portion of the pairs of event classes
using the co-occurrence scores; and

constructing the at least one probabilistic event network
from the at least one case set;

receiving a query regarding at least one future event; and

upon receiving the query, using the at least one probabilis-

tic event network to infer a probabilistic statement
regarding said at least one future event using a network
inference mechanism.

2. The method of claim 1, further comprising: receiving
additional data regarding at least one event occurrence; and

updating said at least one probabilistic event network in

response to receiving the additional data.

3. The method of claim 1, wherein said network inference
mechanism is variable elimination.

4. The method of claim 1, wherein determining co-occur-
rence scores comprises applying at least one co-occurrence
heuristic.

5. The method of claim 4, wherein said at least one co-
occurrence heuristics includes at least one co-occurrence
heuristic based on clustering.

6. The method of claim 4, wherein determining co-occur-
rence scores further comprises applying a plurality of co-
occurrence heuristics.

7. The method of claim 6, wherein said plurality of co-
occurrence heuristics comprise at least one of directed co-
occurrence scores and at least one of undirected co-occur-
rence scores.
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8. The method of claim 1, wherein the training data com-
prises data regarding event occurrences defined as binary
static variables.
9. The method of claim 7, further comprising adding a time
variable to information regarding an event occurrence upon
receiving information regarding the event occurrence.
10. The method of claim 1, wherein said at least one proba-
bilistic event network defines default dependencies between
event occurrences in said training data and at least one of:
corresponding time variables and corresponding specific con-
text variables.
11. The method of claim 10, wherein the default dependen-
cies are derived from the at least one case set.
12. The method of claim 1, wherein the probabilistic state-
ment inferred comprises a probability of occurrence for said
at least one future event.
13. A computer program product for predicting events
from event log data, comprising:
a non-signal computer readable storage medium having
computer readable program code embodied therewith,
the computer readable program code comprising:
computer readable program code configured to construct at
least one probabilistic event network using training data,
the training data being multivariate point process data,
wherein to construct further comprises:
receiving the training data;
generating co-occurrence scores for pairs of event
classes represented in the training data;

the co-occurrence scores indicating a correlation
between two variables included in the pairs of event
classes;

wherein a co-occurrence score for at least one of the
pairs of event classes is based upon a correlation of
time between the two variables included in the at least
one of the pairs of event classes;

wherein the co-occurrence score for at least one of the
pairs of event classes is based upon an order of events
between the two variables included in the at least one
of the pairs of event classes;

generating at least one case set comprising correlated
events for at least a portion of the pairs of event classes
using the co-occurrence scores; and

constructing the at least one probabilistic event network
from the at least one case set;

computer readable program code configured to receive a
query regarding at least one future event; and

computer readable program code configured to, upon
receiving the query, use the at least one probabilistic
event network to infer a probabilistic statement regard-
ing said at least one future event using a network infer-
ence mechanism.

14. The computer program product of claim 13, further

comprising:

computer readable program code configured to receive
additional data regarding at least one event occurrence;
and

computer readable program code configured to update said
at least one probabilistic event network in response to
receiving the additional data.

15. The computer program product of claim 13, wherein

said network inference mechanism is variable elimination.

16. The computer program product of claim 13, wherein
determining co-occurrence scores comprises applying at least
one co-occurrence heuristic.

17. The computer program product of claim 16, wherein
said at least one co-occurrence heuristics includes at least one
co-occurrence heuristic based on clustering.
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18. The computer program product of claim 16, wherein
determining co-occurrence scores further comprises apply-
ing a plurality of co-occurrence heuristics.

19. The computer program product of claim 18, wherein
said plurality of co-occurrence heuristics comprise at least
one of directed co-occurrence scores and at least one of undi-
rected co-occurrence scores.

20. The computer program product of claim 13, wherein
the training data comprises data regarding event occurrences
defined as binary static variables.

21. The computer program product of claim 20, further
comprising computer readable program code configured to
add a time variable to information regarding an event occur-
rence upon receiving information regarding the event occur-
rence.

22. The computer program product of claim 13, wherein
said at least one probabilistic event network defines default
dependencies between event occurrences in said training data
and at least one of: corresponding time variables and corre-
sponding specific context variables.

23. The computer program product of claim 22, wherein
the default dependencies are derived from the at least one case
set.

24. The computer program product of claim 13, wherein
the probabilistic statement inferred comprises a probability of
occurrence for said at least one future event.

25. A system for predicting events from event log data,
comprising:

at least one processor; and

a memory device operatively connected to the at least one

processor;

wherein, responsive to execution of program instructions

accessible to the at least one processor, the at least one
processor is configured to:

construct at least one probabilistic event network using

training data, the training data being multivariate point
process data, wherein to construct comprises:
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receiving the training data;

generating co-occurrence scores for pairs of event
classes represented in the training data;

the co-occurrence scores indicating a correlation
between two variables included in the pairs of event
classes;

wherein a co-occurrence score for at least one of the
pairs of event classes is based upon a correlation of
time between the two variables included in the at least
one of the pairs of event classes;

wherein the co-occurrence score for at least one of the
pairs of event classes is based upon an order of events
between the two variables included in the at least one
of the pairs of event classes;

generating at least one case set comprising correlated
events for at least a portion of the pairs of event classes
using the co-occurrence scores; and

constructing the at least one probabilistic event network
from the at least one case set;

receive a query regarding at least one future event; and

upon receiving the query, use the at least one probabilistic

event network to infer a probabilistic statement regard-
ing said at least one future event using a network infer-
ence mechanism.

26. The system of claim 25, wherein said network infer-
ence mechanism is variable elimination.

27. The system of claim 25, wherein generating co-occur-
rence scores further comprises applying a plurality of co-
occurrence heuristics.

28. The system of claim 27, wherein said plurality of co-
occurrence heuristics includes at least one co-occurrence
heuristic based on clustering.

29. The system of claim 25, wherein the probabilistic state-
ment inferred comprises a probability of occurrence for said
at least one future event.
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